

abcdefghijklmnopqrstuvwxyzßfifjfl 1234567890#¢\$€£££₹₩àáâãäåāăąấ ABCDEFGHIJKLMNOPQRSTUVWYZ&Æ)]} 1234567890@.,:;!?)]}\$*""<>«»¶

Novel Mono - Basic Characters

About: Novel Mono is the humanist monospaced typeface family within the largely extended Novel Collection, also containing Novel, Novel Sans, Novel Sans Condensed, Novel Sans Rounded and Novel Sans Office.

Classic proportions of a Renaissance Antiqua combined with modern details let Novel Mono appear as a friendly and elegant but functional typeface. The almost upright letters of the narrow Italics create a vital contrast to the generous construction of the roman. Features: Novel Mono [948 glyphs] comes in 12 styles and contains small caps for the uprights and the italics, ligatures, lining figures, hanging figures, small caps figures, positive and negative circled figures for upper and lower case, superior and inferior figures, fractions, arrows for uppercase and lowercase and many more OpenType™ features.

Language support: Afrikaans, Albanian, Basque, Bosnian, Breton, Catalan, Chichewa, Croatian, Czech, Danish, Dutch, English, Esperanto, Estonian, Faroese, Finnish, French, Frisian, Gaelic (Scots), Galician, German, Greenlandic, Hungarian, Icelandic, Indonesian, Irish, Italian, Kashubian, Kurdish, Latvian, Lithuanian, Luxembourgian, Maltese, Maori, Norwegian, Occitan, Polish, Portuguese, (Rhaeto-) Romance, Romanian, Sami, Serbian (Latin), Slovak, Slovenian, Sorbian, Spanish, Swahili, Swedish Tswana, Turkmen, Turkish, Walloon, Wolof, Yapese.

Extra Light	Extra Light Italic
Light	Light Italic
Regular	Regular Italic
Semi Bold	Semi Bold Italic
Bold	Bold Italic
Extra Bold	Extra Bold Italic
Extra Light Small Caps	Extra Light Italic Small Caps
Light Small Caps	Light Italic Small Caps
Regular Small Caps	Regular Italic Small Caps
SEMI BOLD SMALL CAPS	Semi Bold Italic Small Caps
Bold Small Caps	Bold Italic Small Caps

EXTRA BOLD ITALIC SMALL CAPS

EXTRA BOLD SMALL CAPS

Morphology

Novel Mono - Bold

Computation

Novel Mono - Extra Light

Non-linearity

Novel Mono - Regular

Reversing Dunes

Novel Mono - Extra Bold Italic

Aeolian Landform

Novel Mono - Light

Downwind Migration

Novel Mono - Bold Italic

A dune field extends for hundreds of kilometres, and takes many thousands of years to form, so that the study of dune-scale geomorphology cannot rely on well defined experiments. The alternative is to assume a set of plausible physical processes based on observations, create a model, and then compare simulated results to nature. Difficulties arise due to the non-linearity involved in the system, which includes wind flow, sand transport and deformation by gravity called avalanching.

Some characteristic features of dunes, such as big asymmetric profile, need theory which goes beyond linear analysis. To describe the evolution of such a system starting from first principles we have to consider momentum conservation of the system comprised of air and sand grains. However any equation is yet available. Even if we can consider wind flow and sand transport separately, it is extremely difficult to solve the Navier-Stokes equation, even in case of an isolated single dune on a flat surface. In the case of a dune field including many dunes, it is almost impossible to calculate the wind flow with the same accuracy as in the case of a single dune.

A dune field extends for hundreds of kilometres, and takes many thousands of years to form, so that the study of dune-scale geomorphology cannot rely on well defined experiments. The alternative is to assume a set of plausible physical processes based on observations, create a model, and then compare simulated results to nature. Difficulties arise due to the non-linearity involved in the system, which includes wind flow, sand transport and deformation by gravity called avalanching.

Some characteristic features of dunes, such as big asymmetric profile, need theory which goes beyond linear analysis. To describe the evolution of such a system starting from first principles we have to consider momentum conservation of the system comprised of air and sand grains. However any equation is yet available. Even if we can consider wind flow and sand transport separately, it is extremely difficult to solve the Navier-Stokes equation, even in case of an isolated single dune on a flat surface. In the case of a dune field including many dunes, it is almost impossible to calculate the wind flow with the same accuracy as in the case of a single dune.

A dune field extends for hundreds of kilometres, and takes many thousands of years to form, so that the study of dune-scale geomorphology cannot rely on well defined experiments. The alternative is to assume a set of plausible physical processes based on observations, create a model, and then compare simulated results to nature. Difficulties arise due to the non-linearity involved in the system, which includes wind flow, sand transport and deformation by gravity called avalanching.

Some characteristic features of dunes, such as big asymmetric profile, need theory which goes beyond linear analysis. To describe the evolution of such a system starting from first principles we have to consider momentum conservation of the system comprised of air and sand grains. However any equation is yet available. Even if we can consider wind flow and sand transport separately, it is extremely difficult to solve the Navier-Stokes equation, even in case of an isolated single dune on a flat surface. In the case of a dune field including many dunes, it is almost impossible to calculate the wind flow with the same accuracy as in the case of a single dune.

A dune field extends for hundreds of kilometres, and takes many thousands of years to form, so that the study of dune-scale geomorphology cannot rely on well defined experiments. The alternative is to assume a set of plausible physical processes based on observations, create a model, and then compare simulated results to nature. Difficulties arise due to the non-linearity involved in the system, which includes wind flow, sand transport and deformation by gravity called avalanching.

Some characteristic features of dunes, such as big asymmetric profile, need theory which goes beyond linear analysis. To describe the evolution of such a system starting from first principles we have to consider momentum conservation of the system comprised of air and sand grains. However any equation is yet available. Even if we can consider wind flow and sand transport separately, it is extremely difficult to solve the Navier-Stokes equation, even in case of an isolated single dune on a flat surface. In the case of a dune field including many dunes, it is almost impossible to calculate the wind flow with the same accuracy as in the case of a single dune.

A dune field extends for hundreds of kilometres, and takes many thousands of years to form, so that the study of dune-scale geomorphology cannot rely on well defined experiments. The alternative is to assume a set of plausible physical processes based on observations, create a model, and then compare simulated results to nature. Difficulties arise due to the non-linearity involved in the system, which includes wind flow, sand transport and deformation by gravity called avalanching.

Some characteristic features of dunes, such as big asymmetric profile, need theory which goes beyond linear analysis. To describe the evolution of such a system starting from first principles we have to consider momentum conservation of the system comprised of air and sand grains. However any equation is yet available. Even if we can consider wind flow and sand transport separately, it is extremely difficult to solve the Navier-Stokes equation, even in case of an isolated single dune on a flat surface. In the case of a dune field including many dunes, it is almost impossible to calculate the wind flow with the same accuracy as in the case of a single dune.

A dune field extends for hundreds of kilometres, and takes many thousands of years to form, so that the study of dune-scale geomorphology cannot rely on well defined experiments. The alternative is to assume a set of plausible physical processes based on observations, create a model, and then compare simulated results to nature. Difficulties arise due to the non-linearity involved in the system, which includes wind flow, sand transport and deformation by gravity called avalanching.

Some characteristic features of dunes, such as big asymmetric profile, need theory which goes beyond linear analysis. To describe the evolution of such a system starting from first principles we have to consider momentum conservation of the system comprised of air and sand grains. However any equation is yet available. Even if we can consider wind flow and sand transport separately, it is extremely difficult to solve the Navier-Stokes equation, even in case of an isolated single dune on a flat surface. In the case of a dune field including many dunes, it is almost impossible to calculate the wind flow with the same accuracy as in the case of a single dune.

Mathematical modelling is now a common tool. In some areas reconstruction methods are used to develop a model from known data to improve our understanding of physical interactions. Dune fields show fascinating features which attract the research attention of many scientists. For scientists a dune field is of interest since it is a landform where aeolian processes dominate.

A dune field extends for hundreds of kilometres, and takes many thousands of years to form, so that the study of dune-scale geomorphology cannot rely on well defined experiments. The alternative is to assume a set of plausible physical processes based on observations, create a model, and then compare simulated results to nature. Difficulties arise due to the non-linearity involved in the system, which includes wind flow, sand transport and deformation by gravity called avalanching.

Some characteristic features of dunes, such as big asymmetric profile, need theory which goes beyond linear analysis. To describe the evolution of such a system starting from first principles we have to consider momentum conservation of the system comprised of air and sand grains. However any equation is yet available. Even if we can consider wind flow and sand transport separately, it is extremely difficult to solve the Navier-Stokes equation, even in case of an isolated single dune on a flat surface. In the case of a dune field including many dunes, it is almost impossible to calculate the wind flow with the same accuracy as in the case of a single dune.

A dune field extends for hundreds of kilometres, and takes many thousands of years to form, so that the study of dune-scale geomorphology cannot rely on well defined experiments. The alternative is to assume a set of plausible physical processes based on observations, create a model, and then compare simulated results to nature. Difficulties arise due to the non-linearity involved in the system, which includes wind flow, sand transport and deformation by gravity called avalanching.

Some characteristic features of dunes, such as big asymmetric profile, need theory which goes beyond linear analysis. To describe the evolution of such a system starting from first principles we have to consider momentum conservation of the system comprised of air and sand grains. However any equation is yet available. Even if we can consider wind flow and sand transport separately, it is extremely difficult to solve the Navier-Stokes equation, even in case of an isolated single dune on a flat surface. In the case of a dune field including many dunes, it is almost impossible to calculate the wind flow with the same accuracy as in the case of a single dune.

Mathematical modelling is now a common tool. In some areas reconstruction methods are used to develop a model from known data to improve our understanding of physical interactions. Dune fields show fascinating features which attract the research attention of many scientists. For scientists a dune field is of interest since it is a landform where aeolian processes dominate.

A dune field extends for hundreds of kilometres, and takes many thousands of years to form, so that the study of dune-scale geomorphology cannot rely on well defined experiments. The alternative is to assume a set of plausible physical processes based on observations, create a model, and then compare simulated results to nature. Difficulties arise due to the non-linearity involved in the system, which includes wind flow, sand transport and deformation by gravity called avalanching.

Some characteristic features of dunes, such as big asymmetric profile, need theory which goes beyond linear analysis. To describe the evolution of such a system starting from first principles we have to consider momentum conservation of the system comprised of air and sand grains. However any equation is yet available. Even if we can consider wind flow and sand transport separately, it is extremely difficult to solve the Navier-Stokes equation, even in case of an isolated single dune on a flat surface. In the case of a dune field including many dunes, it is almost impossible to calculate the wind flow with the same accuracy as in the case of a single dune.

Mathematical modelling is now a common tool. In some areas reconstruction methods are used to develop a model from known data to improve our understanding of physical interactions. Dune fields show fascinating features which attract the research attention of many scientists. For scientists a dune field is of interest since it is a landform where aeolian processes dominate.

A dune field extends for hundreds of kilometres, and takes many thousands of years to form, so that the study of dune-scale geomorphology cannot rely on well defined experiments. The alternative is to assume a set of plausible physical processes based on observations, create a model, and then compare simulated results to nature. Difficulties arise due to the non-linearity involved in the system, which includes wind flow, sand transport and deformation by gravity called avalanching.

Some characteristic features of dunes, such as big asymmetric profile, need theory which goes beyond linear analysis. To describe the evolution of such a system starting from first principles we have to consider momentum conservation of the system comprised of air and sand grains. However any equation is yet available. Even if we can consider wind flow and sand transport separately, it is extremely difficult to solve the Navier-Stokes equation, even in case of an isolated single dune on a flat surface. In the case of a dune field including many dunes, it is almost impossible to calculate the wind flow with the same accuracy as in the case of a single dune.

Mathematical modelling is now a common tool. In some areas reconstruction methods are used to develop a model from known data to improve our understanding of physical interactions. Dune fields show fascinating features which attract the research attention of many scientists. For scientists a dune field is of interest since it is a landform where aeolian processes dominate.

A dune field extends for hundreds of kilometres, and takes many thousands of years to form, so that the study of dune-scale geomorphology cannot rely on well defined experiments. The alternative is to assume a set of plausible physical processes based on observations, create a model, and then compare simulated results to nature. Difficulties arise due to the non-linearity involved in the system, which includes wind flow, sand transport and deformation by gravity called avalanching.

Some characteristic features of dunes, such as big asymmetric profile, need theory which goes beyond linear analysis. To describe the evolution of such a system starting from first principles we have to consider momentum conservation of the system comprised of air and sand grains. However any equation is yet available. Even if we can consider wind flow and sand transport separately, it is extremely difficult to solve the Navier-Stokes equation, even in case of an isolated single dune on a flat surface. In the case of a dune field including many dunes, it is almost impossible to calculate the wind flow with the same accuracy as in the case of a single dune.

Mathematical modelling is now a common tool. In some areas reconstruction methods are used to develop a model from known data to improve our understanding of physical interactions. Dune fields show fascinating features which attract the research attention of many scientists. For scientists a dune field is of interest since it is a landform where aeolian processes dominate.

A dune field extends for hundreds of kilometres, and takes many thousands of years to form, so that the study of dune-scale geomorphology cannot rely on well defined experiments. The alternative is to assume a set of plausible physical processes based on observations, create a model, and then compare simulated results to nature. Difficulties arise due to the non-linearity involved in the system, which includes wind flow, sand transport and deformation by gravity called avalanching.

Some characteristic features of dunes, such as big asymmetric profile, need theory which goes beyond linear analysis. To describe the evolution of such a system starting from first principles we have to consider momentum conservation of the system comprised of air and sand grains. However any equation is yet available. Even if we can consider wind flow and sand transport separately, it is extremely difficult to solve the Navier-Stokes equation, even in case of an isolated single dune on a flat surface. In the case of a dune field including many dunes, it is almost impossible to calculate the wind flow with the same accuracy as in the case of a single dune.

Basic Characters Uppercase

ABCDEFGHIJKLMNOPQRSTUVXYZÆŒØ

Basic Characters Small Caps	ABCDEFGHIJKLMNOPQRSTUVXYZÆŒØ
Basic Characters Lowercase	abcdefghijklmnopqrstuvxyzæœø
Accented Characters Uppercase	ÀÁÂÃÄÅĀĂĄŔÆÇĆĈĊČĎÈÉÊËĒĔĖĘĚĜĞĠĢĞĤĦ ÌÍÎÏĨĪĪĬĮĨĴĶĹĻĽĿŁÑŃŅŇŊÒÓÔÕÖŌŎŐØŔŖŘ ŚŜŞŠŞŢŤŢÙÚÛÜŨŪŪŮŰŲŴÝŶŸŸŹŻŽÞ
Accented Characters Small Caps	ÀÁÂÃÄÅĀĂĄŔŔÇĆĈĊČĎÐÈÉÊËĒĔĖĘĚĜĞĠĢĞĤ ĦÌÍÎĨĨĨĬĮĬĴĶĹĻĽĿŁÑŃŅŇŊÒÓÔÕŌŎŐØŔŖŘ ŚŜŞŠŞŢŤŦŢÙÚŨŨŨŪŬŮŰŲŴÝŸŶŹŻŽÞ
Accented Characters Lowercase	àáâãäåāăąấ́æçćĉċčďđèéêëēĕėęěĝğġģġ ĥħìíîïĩīĭįĵķĺļľŀłñńņňŋòóôõōŏőø ŕŗřśŝşšșţťŧţùúûüũūŭůűųŵýÿӯźżžþ
Alternate Glyphs	ଳ ଭ ତ ତ
Standard Ligatures	ត៍ ក្វែ ហ៍ ហ៍ រា
Standard Punctuation	!;?¿,.:;•'",,,"«»<>()[]{}/ \@\$† ‡ ¶
Uppercase Punctuation	!i?¿«»()[]{}@
Small Caps Punctuation	! i ? i ' ' " " † ‡
 Titling Punctuation	™® ®

Proportional Lining

0123456789#¢\$€££₽f¢₴¥₩

Tabular Lining	0123456789#¢\$€££Ff₡₴¥₩
Proportional Small Caps	0123456789#¢\$€££₣ƒ₡₴¥₩
Tabular Small Caps	O123456789#¢\$€££Ff¢₴¥₩
Proportional Oldstyle	0123456789#¢\$€££Ff¢₴¥₩
Tabular Oldstyle	0123456789#¢\$€££Ff₡₴¥₩
Superior Figures	H ^{0123456789.,-#¢\$€££Ff⊄₴¥₩}
Inferior Figures	H _{0123456789.,-#¢\$€££Ff¢≥¥₩}
Numerators/Denominators	H0123456789/0123456789
Prebuilt Fractions	1/4 1/2 3/4 1/3 2/3 1/8 3/8 5/8 7/8
Mathematic Marks/ Subscript Characters	+−±×÷=≠<>≤≥~≈¬#∂∆∏∑√∫∞‰ª°
Arrows Default	ל↓→↑۲2את
Arrows Stylistic Set 1	++++=>>e abc +++=>>e ABC
Cycled Arrows Positive Stylistic Set 1	ତେତ୍ତିକାରେଭାଜ abc ତେତ୍ରକାରେଭାଜ ABC

Cycled Arrows Negative Stylistic Set 2

00000000 abc 00000000 ABC

Designer: Christoph Dunst

Publishing Date: 2011

Font Software: Version 1.0

Contact: Atlas Font Foundry Friedrichstrasse 236 10969 Berlin/Germany

+49 30 55145455 (phone) info@atlasfonts.com www.atlasfonts.com

Copyright: ©2011 Atlas Font Foundry. All rights reserved. Atlas Font Foundry® and Novel Mono® are registered trademarks of the Atlas Font Foundry.

