

Novel Novel Sans Novel Sans Condensed Novel Sans Rounded Novel Mono

abcdefghijklmnopqrstuvwxyzßfbfifkflft 1234567890#\$¢€£₤₣₡₴¥₩àáâãäåāäåå ABCDEFGHIJKLMNOPQRSTUVWYZ& 1234567890@.,:;!?)]}§*""‹›«»¶

Novel - Basic Characters

About: Novel is the humanist Antiqua typeface family within the largely extended Novel Collection, also containing Novel Sans, Novel Sans Condensed Pro, Novel Mono, Novel Sans Rounded and Novel Sans Office.

Classic proportions of a Renaissance Antiqua combined with modern details let Novel appear as a friendly and elegant but functional typeface. The almost upright letters of the narrow Italics create a vital contrast to the generous construction of the roman.

Features: Novel [914 glyphs] comes in 12 styles and contains small caps, alternate glyphs, many ligatures, lining figures [proportionally and monospaced], hanging figures [proportionally and monospaced], small caps figures [proportionally and monospaced], positive and negative circled figures [UC & LC], superior and inferior figures, fractions, arrows for uppercase and lowercase and many more OpenType™ features.

Language support: Afrikaans, Albanian, Basque, Bosnian, Breton, Catalan, Chichewa, Croatian, Czech, Danish, Dutch, English, Esperanto, Estonian, Faroese, Finnish, French, Frisian, Gaelic (Scots), Galician, German, Greenlandic, Hungarian, Icelandic, Indonesian, Irish, Italian, Kashubian, Kurdish, Latvian, Lithuanian, Luxembourgian, Maltese, Maori, Norwegian, Occitan, Polish, Portuguese, (Rhaeto-) Romance, Romanian, Sami, Serbian (Latin), Slovak, Slovenian, Sorbian, Spanish, Swahili, Swedish Tswana, Turkmen, Turkish, Walloon, Wolof, Yapese.

Extra Light Light Regular Semi Bold Bold

Extra Bold

EXTRA LIGHT SMALL CAPS
LIGHT SMALL CAPS
REGULAR SMALL CAPS
SEMI BOLD SMALL CAPS
BOLD SMALL CAPS
EXTRA BOLD SMALL CAPS

Extra Light Italic Light Italic Regular Italic Semi Bold Italic Bold Italic

Extra Bold Italic

EXTRA LIGHT ITALIC SMALL CAPS
LIGHT ITALIC SMALL CAPS
REGULAR ITALIC SMALL CAPS
SEMI BOLD ITALIC SMALL CAPS
BOLD ITALIC SMALL CAPS

EXTRA BOLD ITALIC SMALL CAPS

Astrophysics

Novel - Extra Light

Stellar matter

Novel - Semi Bold Italic

Expanding cosmos

Novel - Extra Bold

Radiation pressure

Novel - Light

Spherical solutions

Novel - Semi Bold

Extra-galactic nebulae

The first steady-state models of the universe were considered many times in 20th century cosmology. In 1918, the American physicist MacMillan proposed a continuous creation of matter from radiation in order to avoid a gradual "running down" of the universe due to the conversion of matter into energy in stellar processes. MacMillan's proposal was enthusiastically received by Millikan, who suggested that the process might be the origin of cosmic rays. The idea of a continuous creation of matter from radiation was also considered by Tolman as a means of introducing matter into the empty universe.

In 1928, James Jeans speculated that matter was continuously created in the centre of the spiral nebulae: "The type of conjecture which presents itself, somewhat insistently, is that the centres of the nebulae are of the nature of 'singular points', at which matter is poured into our universe from some other spatial dimension ... so that they appear as points at which matter is poured into our universe from some other, and entirely extraneous spatial dimension, so that, to a denizen of our universe, they appear as points at which matter is continually created". Other scientists considered the possibility of creation of matter from empty space. Similar ideas were explored by the Swedish Svante Arrhenius and the German chemist Walther Nernst. However, these theories did not concern the ontinuous creation of matter in an expanding universe.

The first steady-state models of the universe were considered many times in 20th century cosmology. In 1918, the American physicist MacMillan proposed a continuous creation of matter from radiation in order to avoid a gradual "running down" of the universe due to the conversion of matter into energy in stellar processes. MacMillan's proposal was enthusiastically received by Millikan, who suggested that the process might be the origin of cosmic rays. The idea of a continuous creation of matter from radiation was also considered by Tolman as a means of introducing matter into the empty universe.

In 1928, James Jeans speculated that matter was continuously created in the centre of the spiral nebulae: "The type of conjecture which presents itself, somewhat insistently, is that the centres of the nebulae are of the nature of 'singular points', at which matter is poured into our universe from some other spatial dimension ... so that they appear as points at which matter is poured into our universe from some other, and entirely extraneous spatial dimension, so that, to a denizen of our universe, they appear as points at which matter is continually created". Other scientists considered the possibility of creation of matter from empty space. Similar ideas were explored by the Swedish Svante Arrhenius and the German chemist Walther Nernst. However, these theories did not concern the ontinuous creation of matter in an expanding universe.

The first steady-state models of the universe were considered many times in 20th century cosmology. In 1918, the American physicist MacMillan proposed a continuous creation of matter from radiation in order to avoid a gradual "running down" of the universe due to the conversion of matter into energy in stellar processes. MacMillan's proposal was enthusiastically received by Millikan, who suggested that the process might be the origin of cosmic rays. The idea of a continuous creation of matter from radiation was also considered by Tolman as a means of introducing matter into the empty universe.

In 1928, James Jeans speculated that matter was continuously created in the centre of the spiral nebulae: "The type of conjecture which presents itself, somewhat insistently, is that the centres of the nebulae are of the nature of 'singular points', at which matter is poured into our universe from some other spatial dimension ... so that they appear as points at which matter is poured into our universe from some other, and entirely extraneous spatial dimension, so that, to a denizen of our universe, they appear as points at which matter is continually created". Other scientists considered the possibility of creation of matter from empty space. Similar ideas were explored by the Swedish Svante Arrhenius and the German chemist Walther Nernst. However, these theories did not concern the ontinuous creation of matter in an expanding universe.

The first steady-state models of the universe were considered many times in 20th century cosmology. In 1918, the American physicist MacMillan proposed a continuous creation of matter from radiation in order to avoid a gradual "running down" of the universe due to the conversion of matter into energy in stellar processes. MacMillan's proposal was enthusiastically received by Millikan, who suggested that the process might be the origin of cosmic rays. The idea of a continuous creation of matter from radiation was also considered by Tolman as a means of introducing matter into the empty universe.

In 1928, James Jeans speculated that matter was continuously created in the centre of the spiral nebulae: "The type of conjecture which presents itself, somewhat insistently, is that the centres of the nebulae are of the nature of 'singular points', at which matter is poured into our universe from some other spatial dimension ... so that they appear as points at which matter is poured into our universe from some other, and entirely extraneous spatial dimension, so that, to a denizen of our universe, they appear as points at which matter is continually created". Other scientists considered the possibility of creation of matter from empty space. Similar ideas were explored by the Swedish Svante Arrhenius and the German chemist Walther Nernst. However, these theories did not concern the ontinuous creation of matter in an expanding universe.

The first steady-state models of the universe were considered many times in 20th century cosmology. In 1918, the American physicist MacMillan proposed a continuous creation of matter from radiation in order to avoid a gradual "running down" of the universe due to the conversion of matter into energy in stellar processes. MacMillan's proposal was enthusiastically received by Millikan, who suggested that the process might be the origin of cosmic rays. The idea of a continuous creation of matter from radiation was also considered by Tolman as a means of introducing matter into the empty universe.

In 1928, James Jeans speculated that matter was continuously created in the centre of the spiral nebulae: "The type of conjecture which presents itself, somewhat insistently, is that the centres of the nebulae are of the nature of 'singular points', at which matter is poured into our universe from some other spatial dimension ... so that they appear as points at which matter is poured into our universe from some other, and entirely extraneous spatial dimension, so that, to a denizen of our universe, they appear as points at which matter is continually created". Other scientists considered the possibility of creation of matter from empty space. Similar ideas were explored by the Swedish Svante Arrhenius and the German chemist Walther Nernst. However, these theories did not concern the ontinuous creation of matter in an expanding universe.

The first steady-state models of the universe were considered many times in 20th century cosmology. In 1918, the American physicist MacMillan proposed a continuous creation of matter from radiation in order to avoid a gradual "running down" of the universe due to the conversion of matter into energy in stellar processes. MacMillan's proposal was enthusiastically received by Millikan, who suggested that the process might be the origin of cosmic rays. The idea of a continuous creation of matter from radiation was also considered by Tolman as a means of introducing matter into the empty universe.

In 1928, James Jeans speculated that matter was continuously created in the centre of the spiral nebulae: "The type of conjecture which presents itself, somewhat insistently, is that the centres of the nebulae are of the nature of 'singular points', at which matter is poured into our universe from some other spatial dimension ... so that they appear as points at which matter is poured into our universe from some other, and entirely extraneous spatial dimension, so that, to a denizen of our universe, they appear as points at which matter is continually created". Other scientists considered the possibility of creation of matter from empty space. Similar ideas were explored by the Swedish Svante Arrhenius and the German chemist Walther Nernst. However, these theories did not concern the ontinuous creation of matter in an expanding universe.

The first steady-state models of the universe were considered many times in 20th century cosmology. In 1918, the American physicist MacMillan proposed a continuous creation of matter from radiation in order to avoid a gradual "running down" of the universe due to the conversion of matter into energy in stellar processes. MacMillan's proposal was enthusiastically received by Millikan, who suggested that the process might be the origin of cosmic rays. The idea of a continuous creation of matter from radiation was also considered by Tolman as a means of introducing matter into the empty universe.

In 1928, James Jeans speculated that matter was continuously created in the centre of the spiral nebulae: "The type of conjecture which presents itself, somewhat insistently, is that the centres of the nebulae are of the nature of 'singular points', at which matter is poured into our universe from some other spatial dimension ... so that they appear as points at which matter is poured into our universe from some other, and entirely extraneous spatial dimension, so that, to a denizen of our universe, they appear as points at which matter is continually created". Other scientists considered the possibility of creation of matter from empty space. Similar ideas were explored by the Swedish Svante Arrhenius and the German chemist Walther Nernst. However, these theories did not concern the ontinuous creation of matter in an expanding universe.

The first steady-state models of the universe were considered many times in 20th century cosmology. In 1918, the American physicist MacMillan proposed a continuous creation of matter from radiation in order to avoid a gradual "running down" of the universe due to the conversion of matter into energy in stellar processes. MacMillan's proposal was enthusiastically received by Millikan, who suggested that the process might be the origin of cosmic rays. The idea of a continuous creation of matter from radiation was also considered by Tolman as a means of introducing matter into the empty universe.

In 1928, James Jeans speculated that matter was continuously created in the centre of the spiral nebulae: "The type of conjecture which presents itself, somewhat insistently, is that the centres of the nebulae are of the nature of 'singular points', at which matter is poured into our universe from some other spatial dimension ... so that they appear as points at which matter is poured into our universe from some other, and entirely extraneous spatial dimension, so that, to a denizen of our universe, they appear as points at which matter is continually created". Other scientists considered the possibility of creation of matter from empty space. Similar ideas were explored by the Swedish Svante Arrhenius and the German chemist Walther Nernst. However, these theories did not concern the ontinuous creation of matter in an expanding universe.

The first steady-state models of the universe were considered many times in 20th century cosmology. In 1918, the American physicist MacMillan proposed a continuous creation of matter from radiation in order to avoid a gradual "running down" of the universe due to the conversion of matter into energy in stellar processes. MacMillan's proposal was enthusiastically received by Millikan, who suggested that the process might be the origin of cosmic rays. The idea of a continuous creation of matter from radiation was also considered by Tolman as a means of introducing matter into the empty universe.

In 1928, James Jeans speculated that matter was continuously created in the centre of the spiral nebulae: "The type of conjecture which presents itself, somewhat insistently, is that the centres of the nebulae are of the nature of 'singular points', at which matter is poured into our universe from some other spatial dimension ... so that they appear as points at which matter is poured into our universe from some other, and entirely extraneous spatial dimension, so that, to a denizen of our universe, they appear as points at which matter is continually created". Other scientists considered the possibility of creation of matter from empty space. Similar ideas were explored by the Swedish Svante Arrhenius and the German chemist Walther Nernst. However, these theories did not concern the ontinuous creation of matter in an expanding universe.

The first steady-state models of the universe were considered many times in 20th century cosmology. In 1918, the American physicist MacMillan proposed a continuous creation of matter from radiation in order to avoid a gradual "running down" of the universe due to the conversion of matter into energy in stellar processes. MacMillan's proposal was enthusiastically received by Millikan, who suggested that the process might be the origin of cosmic rays. The idea of a continuous creation of matter from radiation was also considered by Tolman as a means of introducing matter into the empty universe.

In 1928, James Jeans speculated that matter was continuously created in the centre of the spiral nebulae: "The type of conjecture which presents itself, somewhat insistently, is that the centres of the nebulae are of the nature of 'singular points', at which matter is poured into our universe from some other spatial dimension ... so that they appear as points at which matter is poured into our universe from some other, and entirely extraneous spatial dimension, so that, to a denizen of our universe, they appear as points at which matter is continually created". Other scientists considered the possibility of creation of matter from empty space. Similar ideas were explored by the Swedish Svante Arrhenius and the German chemist Walther Nernst. However, these theories did not concern the ontinuous creation of matter in an expanding universe.

The first steady-state models of the universe were considered many times in 20th century cosmology. In 1918, the American physicist MacMillan proposed a continuous creation of matter from radiation in order to avoid a gradual "running down" of the universe due to the conversion of matter into energy in stellar processes. MacMillan's proposal was enthusiastically received by Millikan, who suggested that the process might be the origin of cosmic rays. The idea of a continuous creation of matter from radiation was also considered by Tolman as a means of introducing matter into the empty universe.

In 1928, James Jeans speculated that matter was continuously created in the centre of the spiral nebulae: "The type of conjecture which presents itself, somewhat insistently, is that the centres of the nebulae are of the nature of 'singular points', at which matter is poured into our universe from some other spatial dimension ... so that they appear as points at which matter is poured into our universe from some other, and entirely extraneous spatial dimension, so that, to a denizen of our universe, they appear as points at which matter is continually created". Other scientists considered the possibility of creation of matter from empty space. Similar ideas were explored by the Swedish Svante Arrhenius and the German chemist Walther Nernst. However, these theories did not concern the ontinuous creation of matter in an expanding universe.

The first steady-state models of the universe were considered many times in 20th century cosmology. In 1918, the American physicist MacMillan proposed a continuous creation of matter from radiation in order to avoid a gradual "running down" of the universe due to the conversion of matter into energy in stellar processes. MacMillan's proposal was enthusiastically received by Millikan, who suggested that the process might be the origin of cosmic rays. The idea of a continuous creation of matter from radiation was also considered by Tolman as a means of introducing matter into the empty universe.

In 1928, James Jeans speculated that matter was continuously created in the centre of the spiral nebulae: "The type of conjecture which presents itself, somewhat insistently, is that the centres of the nebulae are of the nature of 'singular points', at which matter is poured into our universe from some other spatial dimension ... so that they appear as points at which matter is poured into our universe from some other, and entirely extraneous spatial dimension, so that, to a denizen of our universe, they appear as points at which matter is continually created". Other scientists considered the possibility of creation of matter from empty space. Similar ideas were explored by the Swedish Svante Arrhenius and the German chemist Walther Nernst. However, these theories did not concern the ontinuous creation of matter in an expanding universe.

Basic Characters Uppercase	ABCDEFGHIJKLMNOPQRSTUVXYZÆŒØ
Basic Characters Small Caps	ABCDEFGHIJKLMNOPQRSTUVXYZÆŒØ
Basic Characters Lowercase	abcdefghijklmnopqrstuvxyzæœø
Accented Characters Uppercase	ÀÁÂÃÄÅĀĀÁÁÆÇĆĈĊČĎÈÉÊËĒĖĖĘĚĜĞĠĢĞ ĤĦÌÍÎÏĨĬĮĬĴĶĹĻĽĿŁÑŃŅŇŊÒÓÔÕÖŌŎŐØŔŖŘ ŚŜŞŠȘŢŤŢÙÚÛÜŨŨŬŮŰŲŴÝŶŸŶŹŻĎ
Accented Characters Small Caps	ÀÁÂÃÄÅĀĀÁÁÆÇĆĈĊČĎÐÈÉÊËĒĔĖĘĚĜĞĠĢĞ ĤĦÌÍÎÏĨĬĮĬĴĶĹĻĽĿŁÑŃŅŇŊÒÓÔŌŌŎŐØŔŖŘ ŚŜŞŠȘŢŤŦŢÙÚÛÜŨŪŬŮŰŲŴÝŸŶŹŻŽÞ
Accented Characters Lowercase	àáâãäåāäąấæçćĉċčďđèéêëēĕėęěĝġġġġ ĥħìíîïīīiįiĵķĺļľŀłñńņňŋòóôõōŏőóŕŗřśŝşšș ţťŧţùúûüūŭůűųŵýÿŷźżžþ
Alternate Glyphs	QQQKARATTQQQKARATT F 🖰 Ə Ə Ə Ə
Standard Ligatures	ւթարար արդարար
Discretionary Ligatures	ch ck ct sp st tt
Standard Punctuation	!¡?¿,.:;•",,,"«»‹>()[]{}/\@\$†‡¶
Uppercase Punctuation	i¿«»—(){}[]@
Small Caps Punctuation	!i?i''""†‡
Titling Punctuation	TM ™ (®) ®

Proportional Lining	0123456789#\$¢€££Ff¢₹¥₩
Tabular Lining	0123456789#\$¢€££Ff¢ 2 ¥₩
Proportional Small Caps	0123456789#\$¢€££Fƒ¢ 2 ¥₩
Tabular Small Caps	0123456789#\$¢€££Fƒ¢ 2 ¥₩
Proportional Oldstyle	0123456789#\$¢€££Ff¢₴¥₩
Tabular Oldstyle	0123456789#\$¢€££Ff¢₴¥₩
Superior Figures	H ^{0123456789().,-#\$¢€££Ff¢€¥₩}
Inferior Figures	$H_{0123456789().,\text{-}\#\$¢\in\pounds\pounds Ff}$
Numerators/Denominators	$H^{0123456789}/_{0123456789}$
Prebuilt Fractions	1/4 1/2 3/4 1/3 2/3 1/8 3/8 5/8 7/8
Mathematic Marks/ Subscript Characters	+-±×÷=≠<>≤≥~≈¬∂Δ∏∑√∫∞%‰# ^{ao}
Cycled Figures Positive	@①234\$6789 ABC @①234\$6789 abc
Cycled Figures Negative	00289899 ABC 0028486989 abc
Arrows	$\leftarrow \uparrow \rightarrow \downarrow \nwarrow \nearrow \searrow \swarrow$

Novel - Character set

Designer: Christoph Dunst

Publishing Date:

2008

Font Software: Version 1.0

Contact:

Atlas Font Foundry Friedrichstrasse 236 10969 Berlin/Germany

+49 30 55145455 (phone) info@atlasfonts.com www.atlasfonts.com

Copyright:

©2008 Atlas Font Foundry. All rights reserved. Atlas Font Foundry® and Novel Collection® are registered trademarks of the Atlas Font Foundry.